

Centre for Event & Sport Research

Combined EEG and Eye-tracking in Sports Skills Training and Performance Analysis An Archery Case Study

Keith M Barfoot Alpha-Active Ltd, Honiton, UK Matthew Casey Department of Computing University of Surrey, UK Andrew Callaway Centre for Event & Sport Research Bournemouth University, UK

Aim: To enhance mental performance in sport

- Success in sport requires a winning mind-state and visual skill, as well as high level of talent, physical performance, tactics, etc.
- New mobile sensor devices are now available
 - Compact EEGs to measure neurocognitive activity ^[1]
 - Eye-tracking systems to measure visual focus
 - Recordings can be made during 'real-world' training to compare performance to mental and visual focus, different coaching interventions, etc.
 - Live feedback of data (e.g. sound) to athlete and/or coach
- We present an evaluation of an EEG study in archery
 - Measured and compared mental states versus scores & skill
 - Results vary as a function of level of athlete performance

Compact EEG Set-up

- 5 leads: 2 bipolar channels plus reference lead (active ground)
- 128Hz sampling rate, 24-bit ADC
- Standard passive ECG electrodes used (locations as above)
- Location of electrodes chosen for convenience (no hair) and
- To measure general frontal cortex neurocognitive activity from 4Hz to 45Hz (theta, alpha, and beta frequency bands)

www.surrey.ac.uk/computing/

Study Protocol

- Experimental details :
 - 8 recurve archers in practice sessions
 - County level, near elite and elite archers
 - 3 separate sessions
 - 176 shots analysed and compared with scores
- EEG Spectral analyses were produced for each shot
 - To obtain frequency of brain activity at recording sites
 - Standard Fast Fourier Transform (FFT) and Alpha-Active proprietary^[2] autocorrelation algorithms applied to the raw (time-domain) EEG
 - Frequencies are related to particular mental states
 - Progression of frequency vs time visualised with heat plots
 - Frequency data was split into three bands for study
 - Frequency correlation studies: shot to shot, archer to archer

www.surrey.ac.uk/computing/

www.alpha-active.com/

Combined EEG and Eye-tracking in sports training & analysis

Beta, 13 to 30 Hz: externally focussed, alert, thinking

www.surrey.ac.uk/computing/

www.alpha-active.com/

Data Capture Protocol

- EEG with simultaneous sound recording for arrow release time ([†])
- Each arrow identified and location on target mapped (as well as score)
- Conventional video & sound recording
- Upper GUI shows left spectrum epoch at 6th arrow release and lower GUI shows alpha trend (alpha/whole spectrum) versus time, in minutes

www.surrey.ac.uk/computing/

www.alpha-active.com/

Results

Archer 2, Left Hemisphere Heat Plot

EEG heat plot results for left and right side of brain.

X scale is seconds, showing arrow release times, Y scale is frequency, colour scale is intensity of EEG spectrum, red is most intense, blue is least intense.

www.surrey.ac.uk/computing/

www.alpha-active.com/

Data Analysis

Results similar for same archer, different shots

Mid-aim

Results different between archers

www.surrey.ac.uk/computing/

www.alpha-active.com/

Wireless Mobile Eye-Tracker

Scene camera

Eye camera lens points downwards

- Accuracy of better than +/- 0.5 degrees
- High Resolution 2 megapixel scene camera
- Wireless range of 80 meters
- Calibration through scene image, no IR markers necessary
- 60Hz eye camera

www.surrey.ac.uk/computing/

Synchronous EEG and Eye-Tracker

Circle indicates users point of focus

Bow being raised

- EEG and Eye-tracker output shown for the same time
- Archer is visually engaging with target ahead of taking aim
- EEG GUI shows a period of minimisation of eye movement and increased level of alpha waves

www.surrey.ac.uk/computing/

www.alpha-active.com/

Conclusions

- Compact EEG can be used in 'real-world' practical sports studies
- There are distinct measurable changes in EEG patterns during each archery shot
- Average EEG shot profile can be established for an individual archer
- EEG profile varies from one archer to another, even for those of similar ability, but better archers have more consistent profile from shot to shot
- Initial comparisons of EEG profiles prior to arrow release do not show direct correlation to archery score metrology
- Eye-tracking & EEG indicate a period of 'quiet eye' before arrow is released

www.surrey.ac.uk/computing/

Further work

- Further evaluation needed to confirm and quantify conclusions
 - Across more sessions for a single archer
 - Across a wider range of experience
 - To explore individual shot performance more quantitatively by use of scatter diagrams ^[3]
 - To study in more detail the effects of eye & muscle movement on EEG spectrum
 - To explore further methods of data analysis
 - To determine if real-time feedback can be given and the best method for doing this (e.g. sound, physical stimulus, etc.)
- Work in progress in golf, motorsport, football, etc.
- Further comparison of EEG with simultaneous eye-tracking

Acknowledgements

- To Alan Yau for much of the data analysis carried out with the support of a KTA grant from the EPSRC at the University of Surrey.
- To all the archers who participated in the study including those at GNAS, Lilleshall
- The support of Sara Symington, Louise Jones, Oliver Logan, & Gary Carr at GNAS/Archery GB.
- The loan of an ASL MEXG wireless eye-tracker and associated technical support by S Oliver Associates.
- Project support by Mark Griffiths, Andrea Milton, Allistair Mashiter and Edwin Lizarazo (funded by an IOP Top 40 summer student bursary).

References

[1] Electroencephalographic Studies of Skilled Psychomotor Performance, *Bradley D. Hatfield, Amy J. Haufler, Tsung-Min Hung, and Thomas W. Spalding, Journal of Clinical Neurophysiology, Volume 21, Number 3, June 2004, 144-156.*

[2] Recent Advances in EEG Monitoring For General Anaesthesia, Altered States of Consciousness and Sports Performance Science, M. J. Griffiths, P. Grainger, M.V. Cox, and A.W. Preece, 3rd IEE International Seminar on Medical Applications of Signal Processing, 3-4 November 2005, ISBN 0-86341-570-9/9-78086341-415708

[3] Inter-Rater Reliability and Criterion Validity of Scatter Diagrams as an Input Method for Marksmanship Analysis: Computerised Notational Analysis for Archery, *Andrew J. Callaway and Shelley A. Broomfield, International Journal of Performance Analysis in Sport 2012, 12, 291-310.*

www.surrey.ac.uk/computing/

www.alpha-active.com/

Thank you

Keith M Barfoot eeg@alpha-active.com Alpha-Active Ltd, Honiton, UK Matthew Casey Department of Computing University of Surrey, UK Andrew Callaway Centre for Event & Sport Research Bournemouth University, UK

